

15EL											SN
------	--	--	--	--	--	--	--	--	--	--	----

First Semester B.E. Degree Examination, Dec.2015/Jan.2016 Basic Electronics

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. For the circuit shown in fig.Q1(a) draw the DC load line and locate Q - pt. (04 Marks)

Fig.Q1(a) $5\sqrt{\frac{1}{2}}$ $R_1 = 100 \Omega$ D_1 (Silicon)

- b. What is the need for capacitor filter? For a Half Wave Rectifier, explain the operation of C filter. (06 Marks)
- c. Considering npn transistor in common emitter configuration, explain how it acts as voltage amplifier. (06 Marks)

OR

- 2 a. Explain the working of a Bridge Full Wave Rectifier, with a neat circuit diagram and waveforms. (06 Marks)
 - b. Discuss the load and line regulation using zener diode with neat circuit diagram and appropriate expressions. (06 Marks)
 - c. Calculate the values of I_C and I_E for a BJT with $\alpha_{dc} = 0.97$ and $I_B = 50 \mu A$. Determine β_{dc} .

 (04 Marks)

Module-2

- 3 a. Precisely analyse the circuit of voltage divider bias and hence determine the V_C and V_{CE} . Mention the advantages of voltage divider bias. (10 Marks)
 - b. Derive an equation for output voltage for a non inverting Op amp. Find the gain of amplifier if $R_F = 10K\Omega$ and $R_1 = 1K\Omega$. (06 Marks)

OR

- 4 a. A base bias circuit with a 12V supply uses a transistor with $h_{FE} = 70$. Design the circuit so that $I_C = 2mA$ and $V_{CE} = 9V$ (Assume $R_E = 0$). (06 Marks)
 - b. Explain the working of Op amp as integrator.

(05 Marks)

c. Derive the expression of 3 input summing amplifiers.

(05 Marks)

Module-3

- 5 a. Convert the following: i) $172.625_{(10)} = ($)₂ ii) $(ABCD.72)_{16} = ($)₈ (06 Marks)
 - b. Perform the following operations using 1's and 2's compliment technique

i) $(56)_{10} - (79)_{10}$ ii) $(23)_{10} - (18)_{10}$. (06 Marks)

c. State and prove de Morgan's theorem using truth table for 2 variables. (04 Marks)

15ELN15

OR

- 6 a. Explain full adder circuit with truth table. Realise the circuit for sum and carry using basic gates. Also write the diagram showing FA using two half adders. (06 Marks)
 - b. Simplify and realize the following expressions using only NAND and NOR.

i) $Y = (A + \overline{B}) (B + C) (\overline{C} + \overline{B})$

ii) Y = AB + AC + BD + CD.

(10 Marks)

Module-4

- 7 a. Explain the operation of NOR Latch with symbol, circuit and truth table. (06 Marks)
 - b. With a neat block diagram, explain the architecture of 8051 microcontroller. (10 Marks)

OR

- 8 a. How is Flip Flop different from a Latch? Explain the gated RS Flip Flop with symbol, circuit and truth table. (08 Marks)
 - b. Interface stepper motor to 8051 microcontroller with a neat block diagram. Explain its working principle. (08 Marks)

Module-5

- 9 a. Explain Amplitude Modulation with relevant waveforms. Derive the equation for instantaneous value of modulated signal in volts and define modulation index. (08 Marks)
 - b. Define the term transducer. Mention any four characteristics a transducer should posess.

(02 Marks)

c. Briefly explain the working of thermistor. Mention its applications.

(06 Marks)

OR

- 10 a. Explain the frequency modulation with necessary waveforms. Bring out the difference between AM and FM. (08 Marks)
 - b. Explain construction and the principle of operation of LVDT. (08 Marks)

* * * * *